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Deep Learning and Radio Frequency (RF) Systems

Deep Learning is Emerqging RF Technology is Pervasive
Cyber Medicine Autonomy Internet 8 : ‘ / %

Wireless Networking
Communications

s =

Navigation
) . . . RFAbIatlon Military
. Intru5|_on . Tumpr Detection Pedestrian / . . Image;. _ Internet of Things ~ (Medical) Communications
Detection * Medical data obstacle detection  classification Telecommunications
* Threat analysis » Navigation * Speech
classification » Diagnosis * Street sign reading recognition
* Facial * Drug discovery * Speech * Language =
recognition recognition translation . S - radio Ereque
* Imagery analysis » Document / : §
database
- : g e EE : E
searching e 2 s s s E =
— B o O — =]
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Deep learning technology has yet to make significant impact into RF systems
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Where to Use Deep Learning in RF Systems

>>>> 4
Transmit | Receive
Frequency Frequency

Convert Convert
NG

\
* Spectrum monitoring (threats)
Spectrum / Network « Intelligent spectrum usage
. . . * Electronic protection (anti-jam)
Centric Appllcatlons » Cognitive system control

/
/
Device / Basestation * Advanced modulation
. . . —1/0[1]/1]0]0]1 Modulate * Adaptive waveforms Demodulate J1/of1/1][o0]0]1}—
Centric Applications - Encryption and security
o
\
* Voice/image recognition W
.USGI’ Ap i User Aps « Multi-sensor fusion User Aps <
Centric Applications - Decision making and data reduction J
%
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Why Has It Not Been Addressed

Bandwidth Limited Complicated

Compute
Resources

remote processing not possible at field site for RF and Al independently

Limitations Software

~ Al requires large data sets = No RF systems exist with = Disjointed software
Integrated Al computational
processors

= |nsufficient bandwidth to
send to remote data center

= Difficult to program and
understand
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Deepwave’s Solution and Platform

Approach - Enable the wide adoption of Al within wireless
technology with our integrated hardware and software platform

Hardware for Real-world Applications Easy to Program Software

‘%' /WAVEL EARNER Software\

Artificial Intelligence Radio Transceiver

N~

Industry Leading

Machine Signal
Software Tools

Learning Processing

N\

I £
My
RIS
I k

Hardware Controls

("

RF and Wireless Hardware
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Inference at the Edge with GR-Wavelearner

Train Neural Network Optimize Neural Network Deploy Application
1 DEEPWAVE
Ten;!‘: O PyTOI"Ch @m l_‘"':_@? o - — o T h =]
X3 Cognitive é Caffe2 LI: - e K
4\ " <44 paddlePaddle a.
23 cratner <A NVIDIA. $GNURadio
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Deep Learning Comparison

Image and Video Audio and Language Systems and Signals

“'W !lmm ‘ﬂ’ |
= Multiple channels (RGB) = Single channel = Multiple channels
= X, Yy spatial dependence ~ Frequency, phase, amplitude Frequency, phase, amplitude

~ Temporal dependence (video) =~ Temporal dependence Temporal dependence
Complex data (I/Q)
Large Bandwidths

Human engineered

|
|
|
|
|

Existing deep learning potentially adaptable to systems and signals
« Must contend with wideband signals and complex data types
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Hardware for Deep Learning in RF Systems

Pros Cons

* Slower than GPU
* Fewer software
architectures

CPU » Supported by ML Frameworks
 Lower power consumption

» Supported by ML Frameworks * Overall power

G PU » Widely utilized consumption
* Highly parallel / adaptable * Requires highly parallel
» Good throughput vs power algorithms
Not widely utilized, not well suited
FPGA yuilized
(vet)
ASIC Not widely utilized, not well suited
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Hardware for Deep Learning in RF Systems

Training Inference

Pros Cons Pros Cons
« Slower than GPU « Adaptable architecture * Low parallelism
» Supported by ML Frameworks - : :
CPU . - Fewer software - Software programmable « Limited real-time bandwidth
* Lower power consumption . ) : )
architectures * Medium latency « Medium power requirements

» Supported by ML Frameworks * Overall power

. Widelv utilized consumotion « Adaptable architecture * Medium power requirements
GPU 1aely IMpHic « High real-time bandwidth - Not well integrated into RF
 Highly parallel / adaptable * Requires highly parallel .
) » Software programmable « Higher latency
» Good throughput vs power algorithms
Not widely utilized, not well suited ) H!gh POWET eff|C|ency. ) Lpn_g dloeliy e 4 up_g_rades
FPGA (vet) « High real-time bandwidth « Limited reprogrammability
y » Low latency * Requires special expertise
» Extremely power efficient » Extremely expensive
ASIC Not widely utilized, not well suited . H!gh real-tlme bandwidth * Long development_ t_|me
« Highly reliable * No reprogrammability
» Low latency * Requires special expertise
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Hardware for Deep Learning in RF Systems

Adaptability / Deployment Real Time Compute /
Upgradability Time Lifecycle Cost Bandwidth Watt Latency

CPU

GPU

FPGA

ASIC

GPU signal processing can provide wideband capability and software

upgradability at lower cost and development time
- Must contend with increased latency (~2 microsecond)
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Artificial Intelligence Radio Transceiver (AIR-T)

Analog Devices wireless transceiver

| - AD9371
FPGA for real time DSP e 2%2 MIMO
e 0.3-6GHz

« Built-in calibration (QEC, LO)

GPU for Edge compute of Al Additional Connectivity

* NVIDIA embedded GPU
e 256 GPU cores

« 1PPS/10 MHz for GPS sync

AL\ S « External LO input
« 4 CPU cores (ARM) @ X 73 < HDMI, USB 2.0/3.0, SATA|
« 8 Gbytes memory DeeEpwave Ethernet, SD Card, GPIO
nVIDIA DiaitAL
ANALOG
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Neural Network Deployment in Three Steps

*Step 1 - Train R ool

» Using TensorFlow, MATLAB, Keras, PyTorch, etc. TNeorar 9 Nedral

Network Network

» Step 2 — Optimize et

. y Trained TensorRT Runtim_e
* Using NVIDIA's TensorRT Neural - Optimizer  PLAN File

* Step 3 — Deploy El:t

Runtime Wavelearner Software
. Using Deepwave’s GR-Wavelearner and GNU Radio "™ ™ Rae
ANALOG

DEVICES
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https://developer.nvidia.com/tensorrt
https://github.com/deepwavedigital/gr-wavelearner
https://www.gnuradio.org/
https://www.tensorflow.org/
https://www.mathworks.com/machinelearning
https://keras.io/
https://pytorch.org/

Open Source GR-Wavelearner Software

e e . o = Goalisto help the open source community easily deploy deep
learning within signal processing applications
— | = Well documented README with dependency installation
~-|  instructions to get started quickly
. — Ubuntu 16.04 recommended, Windows 10 supported
‘s — NVIDA Docker Container 18.08*
= -| = Signal classifier example provided:

GR-WAVELEARNER — GNU Radio Flowgraph

o — Python source code

Deepwave — PLAN files that are executable on the AIR-T and Maxwell
— Signal data file example for testing
= Support for TensorRT 5.0
~ Available at: deepwavedigital.com/wavelearner
DEVICES
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GNU Radio — Software Defined Radio (SDR) Framework

= Popular open source software defined radio
(SDR) toolkit:

— RF Hardware optional
— Can run full software simulations

- Python API
— C++ under the hood

- Easily create DSP algorithms
— Custom user blocks

| vector to tr.-ni Stream to Vector
Num Items: 16 354K > N Items: 1024k B

= Primarily uses CPU
— Advanced parallel instructions
— Recent development: RFNoC for FPGA processing

= Deepwave is integrating GPU support for both QDGNU Rad|0

THE FREE & OPEN SOFTWARE DIDO ECOSYSTEM

DSP and ML —
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Deepwave’s Solution and Platform

Seamless Deployment of Deep Learning in RF Applications

Artificial Intelligence Radio Transceiver (AIR-T) GR-Wavelearner Software

AIR-T Hardware (2x2 MIMO)

Ubuntu Operating System

GNU Radio DSP Software

RF Signal In
Neural
RF Signal Out Network
Data I/O

The AIR-T pre-installed with all software tools necessary for deployment

ANALOG
DEVICES
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GR-Wavelearner

classifier_testgre - fexport/test - GNU Radio Companion |

Properties: Inference

R > m Qe :
= Out of tree (OOT) module s e : - General Advanced Documentation
classifier_test % classifier_test » [ Audio ]
» [ Boolean Operators | D [wavelearner_inference_o\ I
Opti . o
fo r G N l ' Rad I O Ch e " [Byte Op.eratorsl PLAN File export/test/classifier_test.plan |...
Title: Classifier Test Variable Variable Variable Variable > [ Channelizers]
Author: Deepwave Digital, Inc ID: batch_size | | ID: input_length | | ID: output length | | ID: samp_rate > [ channel Models ] |nput Vector Leng ianIt [ength*batch size
Description: Test ...ce Block Value: 4 Value: 4.096k Value: 16 Value: 25M [ Coding ] — —
G ite Options: No GUI > | Coding .
o e PN | [ Control Port Output Vector Ler outpuk_length*batch_size

~ Allows users to easily sacnsize  bateh sz

Complexity: 45ubal 3 [Dfe?recated]_ .
incorporate deep learning |5

» [ Equalizers
Repeat: No

Short To Float
s 32.768k

. . . ]
Into signal processing
» [Filters]
» [ Fourier Analysis ]
Inference — > [ GUI widgets ]
PLAN File: ._ifier_test.plan ‘erminal in| > [Im ﬂirment MOdelS
= C+ + an d Pyt h O n A P I :&fu\tl?/:::trnl;ﬂ?;:hlzeéinw ::tt:-::::ungm “ d {Insl;rumentation] :
Batch size: 4 » [ Level Controllers] OK Cancel || Apply

*> [ Math Operators ]

> [ Measurement Tools ]
> [Message Tools] [x] Properties: Terminal Si
» [ Misc ] =
» [ Modulators | General Advanced Documentation

= Open source GPLv3 license [..

ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]

. ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] etworking Tools | ID wavelearner_terminal_sink_0
= |WO DIOCKS currently. Batch 16 - [N

ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] » [OFDM] Input Vector Leng outpukt_length * batch_size
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] b 3 .
I f T RT ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] [ Packet Operator Batch Size  |bakch_size
- nrerence — ensor W ra.p p er ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] > [ Pager]
D —— Batch 11 > [ Peak Detectors ]
f G N U R d 1 ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] > [Resamplers]
or adlo ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] » [ Stream Operators]

ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]

ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] > [ Stream Tag Tools ]

. - h > [ Symbol Coding]
- Ter m I n al SI n k - Pyt h o n m O d u I e Bitrcgl\/:azx at 3:[0.000.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] > [Sz::hc;on?zelggi

. . . ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] » [ Trellis Coding |
fO r d | S | a | n C I as S | f | er O u t u t ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] L Tvpe G .
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] [ Type Converters]
Batch 13 »[UHD]
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] » [ Variables ]
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ] » [Video ]

ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]
ArgMax at 3: [ 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ]
Processed 56 Signal Segments in 0.00229218s » [ wavelearner ]
[Throughput: 24430.8 Segments/s > [ZzeroMQ Interfaces] OK Cancel
JAverage Time per Segment: 40.9286us

» [ Waveform Generators ]

>>> Done
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Training to Deployment Workflow

| X

[ Train

/

Optimize }

= Workflow utilizes

Deploy }

TensorRT for deployment

- Allows for training on wide array of frameworks

4 ) 4 )
Native support for TensorRT Support Via ONNX**
N S Caffe? 5 copmiive Sk PaddlePaddle
T 4 MathWorks 5 s o
. yTorch
T d» Chainer
- / o /

20 * Deep Neural Network

**Open Neural Network Exchange

Deepwave DiaITAL, INC
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Deepwave’s Training to Deployment Workflow

| Train } | Optimize | Deploy |

TensorFlow Example Caveats

Step 1: Freeze graph (make variables constants) = Not all layers are supported, but
mOost common ones are

~ PLAN file must be created on
deployment architecture

— Python conversion not available on
Step 3: Convert UFF File to PLAN File ARM (Jetson)

Note: This step must be completed on deployment — Limited transferability of PLAN files
architecture

Step 2: Convert DNN* model to UFF File

ANALOG
DEVICES
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Deepwave’s Training to Deployment Workflow

Train >[ Optimize

'>[ Deploy

GNU Radio Companion GUI

Python API
Real time DNN* RF system in 35 lines of code!

classifier_test-gqui ® classifier_test®

Options
1D: classifier_test
Title: Classifier Test
Author: Deepwave Digital, Inc
Description: Test _ce Block
Generate Options: Mo GUI
Run Options: Aun to Completion
Realtime Scheduling: On

1D: fs
Value: 100M

ID: nbatch
Value: 4

1D: nin
Value: 4.096k

1D: nout
Value: 16

Complexity: 45ubal

Flle Source

Flle: __jclassifier testdat . 'Ir“':‘:-"."‘ 2oom :hl:ﬂ ‘;‘t; 2;1!:
Repeat: No ample Rate: cale: 32,

Inference

PLAN File: .sifer_testplan Terminal Sink
St to Vecto =
- "”T‘fmm& » ] nput vector Length: 16.384k | =[] Input vector Length: 54
e Output Vector Length: 64 Batch Size: 4

Batch Size: 4

22 * Deep Neural Network

classifier_testgrc - fexport/software/deepwave/gr-wavelearner/examples - GNU Radio Companion
o Mm% & - % b m Qe

+ | GUI Widgets |
* [ Impairment Models ]
* [ Instrumentation ]
* [ Level Controllers ]
* [ Math Operators ]
* [ Measurement Tools ]
* [ Message Tools ]
» [ Misc ]
* [ Modulators ]
* [ Metworking Tools |
» [NOAA ]
+ [OFDM]
* [ Packet Operators ]
» [ Pager]
* [ Peak Detectors ]
* [ Resamplers ]
* [ Stream Operators |
* [ Stream Tag Tools ]
* [ Symbol Coding ]
+ [ synchronizers ]
+ [ Trellis Coding ]
* [ Type Converters ]
»[UHD]
+ [ Variables]
* [Video]
+ [ waveform Generators ]
* [ Wavelearner ]
Inference
Terminal Sink
+ [ ZeroMQ Interfaces]

ierTest()

Deepwave DiaITAL, INC

nbatch)

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™



ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

Example Signal Detection and Classification

23



Multi-transmitter Environmental Scenario

Receiver monitors
congested spectrum
using deep learning

4 ANEENER
S INNRRRNANRNNEND
T T T T 1

s TEEEERT ;:
S ARG

T
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Radar Signal Detector Model: Transmitted Signals

o & ¢ @ S & N> 2 >
£ & & & 3 & & § &£ & § &5
§F & &§ &8 88 £ 8 885 58 8 8
Radar Waveform S § 9 O O & ¥ ¥ 0 ¥ = OO o o
Linear Pulse X | X | X X| X | X
Non-Linear Pulse X | X | X
Phase Coded Pulse X
Pulsed Doppler X | X | X

Technique demonstration shown with nominal radar signals
« Method applicable to communications, cellular, and other RF protocols

ANALOG
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Dataset Overview

— Goal: Develop a deep learning classifier
that detects signals below noise floor

— Requires training on noisy data with and without
interference

= Swept SNIR from -35dBto 20dB in 1 dB
Increments

— 1000 training segments per SNIR
— 500 inference segments per SNIR
— Up to 3 interferers in each segment

26
Deepwave DiaITAL, INC
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Radar Signal Detector Model: Example Classifier

Deep Learning
Detector / Classifier

Y Y Y

Signal Feature Extraction Signal Classification .

Signal Stream —

1QI QI QIOQ

Max Pool

9
)
e
o
>
c
@)
@)

® Tensor

cuDNN

27
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Training Process and Progress

Deep Learning Classifier Training

= 1000 training segments per SNR 25 256 Batch, L10°
— 55 different SNR values 2.0 — 512 Batch, L =10°
. ] 256 Batch, L =10+
= Training on low SNR values increase g 15 — 512 Batch, L=10"
detection sensitivity © 10}
0.5+
= 100% accuracy not expected due to
training at extremely low SNR values 1.0
0.8 r
= Softmax cross entropy 2
S 06!
= Adam Optimizer E 04|
0.2
o |
o 1 2 3 4 5 6 7 8 9 10
Epoch
ANALOG
DEVICES
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Receiver Operating Characteristic (ROC) Curve

Probability of Correct
Classification for All Signals

1.0

0.8 1

0.6
= Surveillance
e Ground (LFM1)
me Ground (LFM2)
m— MTI

wes Airborne (Med PRF)
== : Airborne (High PRF)

PCC

0.4

Ground (Frank)
== « Nautical (Short Range)
Nautical (Med Range)

0.2 A

* Nautical (Long Range)
* Ground (NLFM1)
* Ground (NLFM2)
* Ground (NLFM3)

30 20 ~10 0 10 20
SNR (dB)
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Benchmarking Deep Learning
Inference on Embedded GPUs
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Critical Performance Parameters

Signal Stream

HHE - I - \What makes a DNN model “good?”
— High Sensitivity — detects low powered signals
Convolution

— Low false alarm rate — minimize false positives

— High real time bandwidth
atte — Low computational requirements
* | — Low latency

Qi = Most of these critical performance
7 parameters are adversarial

ANALOG
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Performance Benchmarking Test Setup

Define Model Train Model Measure Measure Real Time
Structure Sensitivity Throughput

ANALOG

DEVICES
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Performance Benchmarking Test Setup

Define Model Train Model Measure Measure Real Time
Structure Sensitivity Throughput

Repeat for multiple models

Signal Stream chnStride, Model Tuning Variables
\_Number of Filters CNN Stride 9
Number of Filters 4 256 7
Classifier Layer 1 Width 64 128 3
Classifier Width Classifier Layer 2 Width 32 64 3
Classifier Layer 3 Width 0 64 2
Classifier _
Depth Batch Size 1 256 8
Total Models Tested 728
ANALOG
DEVICES
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Performance Benchmarking Test Setup

pJertine viodel . vieasure vieasure real 1ime
. Train Model — ' ‘

>iructiure >EeNSITIVITY

B a
1| .‘\L.»JI("\.J-\.‘ L

— 256 Batch, L =10"
-~ 512 Batch, L =10

256 Batch, L =10*
- 512 Batch, L =10+

= 1000 training segments per SNR
— 55 different SNR values §

- Softmax cross entropy

05+
= Adam Optimizer 10
= Quadro GP100 GPU 0.8 |

» Create UFF File for each model

Accuracy

ANALOG
Epoch DEVICES

AHEAD OF WHAT'S POSSIBLE™

34
Deepwave DiaITAL, INC



Performance Benchmarking Test Setup

eTine i 1€ Vi - Measure vieas > Ned <
~ > ' . Sensitivity | 1]

1.0

- Compute receiver operating R e
characteristic (ROC) curve for
each model

PCC

= Define sensitivity to be where
median PCC = 50% for all
signal types

== Airborne {Med PRF)

w= « Ajrborne {High PRF)
Ground (Frank )

==« Nautical (Short Range)
Mautical {(Med Range }

10 20

ANALOG
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Performance Benchmarking Test Setup

Measure Real Time
Throughput

= Create TensorRT PLAN file for - Probe data rate at two locations:

each platform tested 1. Aggregate data rate for entire process

- Load signal data into RAM — Number of bytes processed / wall time
= Stream unthrottled data to 2. Computation data rate in work() function
GR-Wavelearner — Number of bytes process / computation time
ANALOG
N DEVICES
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Data Rate Benchmark for AIR-T (Tegra TX2)

37

Batch Size = 32

0 50 100 150 200
Data Rate (MSPS)

Deepwave DiaITAL, INC

- Tested 91 different CNN
classifier models

= Maximum real-time inference
data rate for 8 different batch

sizes

= Able to achieve 200 MSPS
(real) with AIR-T

AIR-T

L« DEVICES
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Data Rate Benchmark for AIR-T (Tegra TX2)

- Tested 91 different CNN classifier

50 Batch Size = 1 1 Batch Size = 2 Batch Size = 4 i Batch Size = 16
models
40 l = Maximum real-time inference data
2 3 1 rate for 8 different batch sizes
2
~ 20 = Able to achieve 200 MSPS (real
samples) with AIR-T
10
0 1 1 I T L] T I T I I AIR—T
5o - Batch Size = 32 ] Batch Size = 64 Batch Size = 128 ] Batch Size = 256 B 1
40 + -
£ 30 -
8
20 + —
10 + - -
0

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Data Rate (MSPS) Data Rate (MSPS) Data Rate (MSPS) Data Rate (MSPS)

ANALOG
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Data Rate Benchmark for Desktop (Quadro P100)

, _ , , » Tested 91 different CNN classifier
Batch Size = 1 Batch Size = 2 Batch Size = 4 Batch Size = 16
80 - - . models
60 i ] i = Maximum real-time inference data
2 rate for 8 different batch sizes
8 40 - - - . » .
= Using unified memory will increase
20 § ] 1 throughput
° ' ' ' ' ' — ' ' ' Desktop (GP100)
80 4 Batch Size = 32 i Batch Size = 64 i Batch Size = 128 1 Batch Size = 256 e e D
60 - . . .
§ 40 - . 1 .
20 . . -
O -1 1 = | =
0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600
Data Rate (MSPS) Data Rate (MSPS) Data Rate (MSPS) Data Rate (MSPS)
ANALOG
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Wall Time vs. Compute Time for AIR-T
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Model Accuracy Benchmarks
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Summary

= Deep learning within signal processing is emerging
— Algorithms may be applied to signal’'s data content or signal
itself
= High bandwidth requirements driving edge solutions

-~ Deepwave developed AIR-T

— Edge-compute inference engine with MIMO transceiver
— FPGA, CPU, GPU for computation

— GR-Wavelearner software:
— Open source inference engine for software-defined radios
— Available now on Deepwave’s GitHub page

= Benchmarking analysis demonstrates AIR-T with GR-Wavelearner capable of signal
classification inference at 200 MSPS real-time data rates

— Improvements likely in future release
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Thank You For Watching!

Additional Information on Deepwave Digital
www.deepwavedigital.com

View Additional Webcasts at
www.analog.com/Webcasts

Ask Questions on EngineerZone
ez.analog.com/Webcasts

Search for ADI Parts on Arrow
www.arrow.com
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http://www.deepwavedigital.com/
http://www.analog.com/en/education/education-library/webcasts.html
https://ez.analog.com/community/webcast-qa
https://www.arrow.com/en/manufacturers/analog-devices

